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The assumptions made in the theory of the tunneling process of single-nucleon transfer are reviewed and 
their shortcomings discussed. A schematic form of a black-box treatment is systematized and assumptions 
made are pointed out. The reason for the agreement between results obtainable from this form and the 
earlier way of ascertaining quantum-mechanical corrections is discussed. Among the assumptions made is 
the legitimacy of neglecting terms that vanish when the ratio of the nucleon mass to the reduced mass is set 
equal to zero. The character of effects arising from these terms is illustrated by means of a one-dimensional 
model, and the associated inadequacy of dealing only with the relative motion of the heavy aggregates with
out including effects of motion with respect to the inertial system is pointed out. Further discussion concerns 
itself with the effects of the angular momentum of the transferred nucleon in the emitting nucleus and in the 
receiving one on the space dependence of the transfer function; the symmetrized forms of the transfer cross 
section; the effect of the relative velocity of the emitter and receiver nuclei on the matching of the angular 
momentum of the nucleon; the transition from the isotropic-transfer quantum treatment to the correspond
ing semiclassical one, including the double-limit situation involved in making the scattering angle and the 
space-decay parameter approach zero; the questions involved in the consideration of the exterior region, 
including the possible effect of deuteron, triton, alpha particle and other types of tentacles in configuration 
space; and the distinction between the nucleon configuration and wave-function assignments of shell-
structure theory and the nucleon configurations and wave functions that matter more directly for the 
treatment of the exterior region and of single-nucleon transfer. The bearing of virtual Coulomb-excitation 
processes on applications of usual potential-barrier penetrability estimates for reaction-yield estimates 
made in astrophysics is mentioned, and it is pointed out that as the kinetic energy is decreased, the nuclear 
radii in ordinary estimates must be increased. 

I. INTRODUCTION 

APPLICATIONS1 of a form of nucleon-transfer 
theory2 have been made employing primarily the 

semiclassical (SC) approximation. In view of the large 
amount of experimental material which has been com
pared with theoretical expectation and of the variable 
character of the agreement, it appears desirable to 
point out and to discuss some of the limitations on the 
applicability of the equations used. The considerations 
in the earlier theoretical papers2-5 do not take into 
account some essential aspects of the process. Dis
agreements between calculation and measurement may 
thus be due, at least partly, to the incompleteness of 
the theory originally intended for qualitative purposes 
and the examination of the earlier data6 on N14(N14, 
N13)N15. The limitations on the applicability of the 
equations in the earlier work2-5 were partly discussed 

* Supported by U. S. Army Research Office, Durham and U. S. 
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1 D . E. Fischer, A. Zucker, and A. Gropp, Phys. Rev. 113, 542 
1959); J. A. Mclntyre, T. L. Watts, and F. C. Jobes, ibid. 119, 
1331 (I960); A. Zucker, in Proceedings of the Conference on Direct 
Interactions and Nuclear Reaction Mechanisms, Padua, 1962 
(Gordon and Breach Publishers, Inc., New York, 1963), p. 857; 
K. S. Toth and E. Newman, in Proceedings of the Third Conference 
on Reactions Between Complex Nuclei, edited by A. Ghiorso, R. M. 
Diamond, and H. E. Conzett (University of California Press, 
Berkeley, 1963), p. 114; L. C. Becker, F. C. Jobes, and J. A. 
Mclntyre, ibid., p. 106; a complete bibliography is not attempted. 

2G. Breit and M. E. Ebel, Phys. Rev. 103, 679 (1956). This 
paper will be occasionally referred to as BE-I. 

3 M. E. Ebel, Phys. Rev. 103, 958 (1956). 
4 G. Breit and M. E. Ebel, Phys. Rev. 104, 1030 (1956). This 

paper will be occasionally referred to as BE-II. 
5 G. Breit, in Handbuch der Physik, edited by S. Fltigge 

(Springer-Verlag, Berlin, 1959), Vol. 41, Part 1, especially Sec. 48. 
6 H . L. Reynolds and A. Zucker, Phys. Rev. 101, 166 (1956). 

in papers read at conferences7-9 which were sufficiently 
concerned, however, also with other matters to make 
the presentation of the limitations unsystematic and 
not sufficiently clear. 

The possibility of exploring the density of nucleons 
at the nuclear surface10 which in the case of reactions 
with small Q values amounts to the determination of 
reduced widths for nucleons in their bound states has 
been discussed concretely2 for the case of N14(N14, 
N13)N15 in the SC approximation which is frequently 
used in applications.1 This possibility still remains one 
of the attractions of the study of nucleon transfer since 
the reduced widths are valuable parameters for nuclear 
structure models. 

A systematic presentation of a black box treatment 
is presented in Sec. II. The "black boxes" are the 
nuclear interiors of the transmitter and receiver nuclei. 
The problem is specialized to the case of the isotropic 
transfer function and it is brought out that the quan
tum-mechanical (QM) equations can be transformed 
in a manner similar to that used in BE-I for the treat
ment of adiabatic wave functions and the reduction to 
reduced widths in the case of reactions with small Q 
values. This process leads to Eq. (2.16) and its partner 

7 G. Breit, in Proceedings of the Second Conference on Reactions 
Between Complex Nuclei, Gatlinburg, 1960 (John Wiley & Sons, 
Inc., New York, 1960), p. 1. 

8 G. Breit, in Proceedings of the Conference on Direct Interactions 
and Nuclear Reaction Mechanisms, Padua, 1962 (Gordon and 
Breach Publishers, Inc., New York, 1963), p. 480. 

9 G. Breit, in Proceedings of the Third Conference on Reactions 
Between Complex Nuclei, Asilomar, 1963 (University of California 
Press, Berkeley, 1963), p. 97. 

10 G. Breit, M. H. Hull, Jr., and R. L. Gluckstern, Phys. Rev. 
87, 74 (1952). 
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obtained by interchange of the receiver and emitter. A 
further simple reduction yields the coupled equations 
(2.17), (2.18). Neglect of the last two terms in curly 
braces involving the ratio of the nucleon mass to the 
reduced mass of the collision process, M/y, gives Eq. 
(2.20) which is the QM extension of the SC equations 
in BE-I. The relationship of consequences of these 
equations to an earlier derivation of the QM correction 
factor to the SC formulas is then discussed and the 
reason for the agreement of the two approaches is 
mentioned. The insufficiency of reduced widths for the 
general treatment of the tunneling process in cases of 
the reaction Q value being 9^0 is brought out in the 
course of the presentation and the nature of the quan
tities entering instead is briefly described. In Sec. I l l 
the effect of the omitted terms in M/n is examined 
employing a one-dimensional example of two equal 
5-f unction potentials. For the case of complete sym
metry of masses and fields these effects become small 
but in the case of N14(N14,N13)N15 for which many 
comparisons between theory and experiment have been 
made there is no assurance of symmetry of the fields. 
The modified space dependence of addition to transfer 
function f3 contained in 1—a0x of Eq. (3.20) and the 
presence of momentum dependence appear noteworthy 
since analogous terms in a more complete treatment 
may affect comparison with experiment. Both terms in 
(3.20) are needed to verify reciprocity, i.e., to obtain 
Hermiticity. 

The angular momentum of the transferred nucleon 
affects the space dependence of the transfer function 
as discussed in Sec. IV. Since the wave function of the 
transferred nucleon may be a linear superposition of 
functions with different orbital angular momenta, and 
since, for anisotropic transfer, the space dependence is 
affected by the orientation of the projection of the 
orbital angular momentum, these effects can modify the 
angular and energy dependence of the transfer cross 
section. In Sec. V, the effect on the angular momentum 
of nucleon c about nucleus b of the relative motion of 
nucleus a containing c is discussed in a simple special 
case. The presence of such effects is well known in the 
theory of deuteron stripping, but since it has not been 
taken into account explicitly for nucleon transfer from 
heavier nuclei, its discussion appeared desirable. 

In Sec. VI, the limit M/n = 0 for the dynamic cor
rection term in the case of the isotropic-transfer func
tion is returned to and the connection between the 
QM and SC results is discussed. The relationship of the 
cross section formulas to the Rutherford scattering 
formula at small angles 0, and the double-limit situation 
that arises when 6 and the range parameter of the 
neutron usually denoted by a approach zero, is dis
cussed. This matter is of interest in connection with the 
comparison of theoretical formulas with experiment for 
the N14(N14,N13)N15 reaction. In this section the possi
bility of enhancement of effects of competition with 
other reactions through virtual Coulomb excitation at 

the larger internuclear distances is briefly discussed. I t 
may result in an effective increase of the range of 
spatial extension of the imaginary part of the effective 
optical potential commonly called W, and to the 
presence of wave-absorption effects at lower bom
barding energies than otherwise expected. In the same 
connection, the possible presence of resonance effects 
like those in the Heitler-London theory of molecular 
binding may be useful to recall especially in connection 
with the collision of N14 with N14. The possible bearing 
of virtual Coulomb-excitation processes on reaction 
yield estimates made in astrophysics is mentioned at 
the end of this section. 

The limitations on quantitative applicability of 
single-nucleon transfer theory caused by tentacles of 
deuterons, tritons, etc., in configuration space are 
briefly mentioned in Sec. VII. This section is also con
cerned with the indirectness of the connection between 
the wave function of the transferred nucleon and shell-
model configurations. 

Some of the main symbols reoccurring in the paper 
which it might be difficult to identify are as follows: 
1 indicates termination of influence of operator in ( 1; 
Ma, filh are orbital angular momenta of c while attached 
to a and b, respectively; ma, mh are the magnetic 
quantum numbers of la and lb. In subscripts and super
scripts la, ma,lb, mh are printed as /(a), m(a), 1(b), m(b); 
s = sin(6/2) where 6 is the angle made by the velocity 
of the reaction product with that of the incident 
nucleus. 

II. THE BLACK-BOX TREATMENTS 

As carried out,2 the SC approximation makes use of 
the following assumptions: (a) The motion of the heavy 
aggregates, such as the two colliding nuclei may be 
approximated by classical mechanics; (b) the forces 
between nucleons have a short range; consequently, the 
effects of Coulomb excitation, real or virtual, are sup
posed to have a negligible effect; (c) transitions between 
levels of the same nucleus caused by acceleration effects 
are not taken into account; (d) reactions other than 
the transfer reaction under consideration have a neg
ligible probability at any point on the classical orbit. 

The limitations on assumption (a) have been dis
cussed in Ref. 5 from two viewpoints. The first was 
concerned with qualitative estimates of the possibility 
of satisfying the requirements of sufficiently good wave-
packet localization. These turned out to be higher than 
could be satisfied during the collision time which is long 
enough to allow appreciable spreading of the wave 
packet. The reason for this is the large separation energy 
of the neutron in N14 and in N13 which makes it necessary 
to localize the relative distance of the nuclei better than 
within the limits of l / (2a) where 

a=(2fjLac\Eca\/h^ (2.1) 

is the reciprocal of the range constant of the neutron 
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wave function in the outer regions of the emitter 
nucleus a. Here \xac is the reduced mass of relative 
motion of the neutron c and nucleus a while Eac is the 
binding energy of c in a. The reason for this high degree 
of localization is that the chance of the neutron pene
trating from a to c varies approximately as exp(—2arab). 
The relative largeness of Eac which is « 1 0 MeV in the 
case of N14 makes it difficult therefore to localize the 
wave packet sufficiently. 

Secondly, a perturbation calculation, Eqs. (48.27)-
(48.36), employing a 5-function type of interaction 
energy between the neutron and the receiver nucleus 
b has been made and the results compared with those of 
the SC approximation. This calculation made use of the 
evaluation of an integral in the work of Ter-
Martirosyan11 on (d,p) reactions which is closely 
related to independent work on (d,p) reactions by 
Biedenharn, Boyer, and Goldstein.12 Although the 
treatment of the motion of the transferred neutron 
is considered in this quantum-mechanical (QM) treat
ment with much less generality than in the corre
sponding SC considerations made in Ref. 2, it is never
theless to be expected that the ratio of the QM to the 
SC quantities in this special case should have a close 
relationship to the value of the same ratio under the 
more general conditions used in Ref. 2. A reason for 
this expectation is that the errors of the SC treatment 
have to do primarily with the impossibility of the exact 
localization on the classical orbit of the heavy aggre
gates so that qualitatively the replacement of a 5-
function interaction by one with space extension gives 
rise to an averaging which is similar for the 8 function 
and other interactions. This supposition is supported 
by a more detailed argument presented at the Padua 
conference.8 The result of the calculation is that within 
the accuracy of the approximation used the cross section 
is proportional to |/o(#)|2 , where 

h(d) = —— / V - ^ k / ; r)̂ +)(̂ .,kt; r) 
(47T)1'2 J 

X {e-ar/r)dt (2.2) 

is the Ter-Martirosyan integral for scattering angle 6 
connected with initial and final relative momenta k», 
k/ of the heavy aggregates by 

cos0= (ki'kf). 

Employing the steepest descents approximation to the 
hypergeometric function that occurs in Jo(0) as worked 
out by Ter-Martirosyan11 the ratio of QM to SC values 
of the collision cross section a is obtainable from (48.33) 
of Ref. 5. In the special case of ki=kf, rn=rjf, ap
proaching the limit of TJ—> <*>, &—» <x>? keeping 
7}/k = af = % times the classical distance of closest 

11 K. A. Ter-Martirosyan, Zh. Eksperim. i Teor. Fiz. 29, 713 
(1955) [English transl. Soviet Phys.—JETP 2, 620 (1956)]. 

12 L. C. Biedenharn, K. Boyer, and M. Goldstein, Phys. Rev. 
104,383 (1956). 

approach, there results Eq. (48.34) of Ref. 5 which 
reproduces the SC dependence of a on an and 0 as in 
Eq. (23.1) of Ref. 2. Employing the most critically 
varying factor in the ratio of QM to SC values of a 
this ratio is approximately that of the corresponding 
values of 

exp{-4?7 tan_1[o;/2^s]} 

= exp{ - 2a 'a[ l - 4 (a/2£s)2+ • • • ] / s} , (2.3) 
where 

s=s in (0/2). (2.4) 

For the (N14,N13) reaction at bombarding energy of 
14 MeV on N14, this effect amounts to5 a —13% effect 
at 180° and —40% effect at 90°. In these numbers only 
the contribution caused by direct scattering is con
sidered as though N1413 and N14 were not identical 
particles, the main purpose being to illustrate the order 
of magnitude of effects. According to Eqs. (48.35) and 
(48.36) of Ref. 5 and the discussion following them the 
effect on the total cross section at the same energy is 
about 25%. The difference between QM and the SC 
approximation has thus been known to be non-neg
ligible for some time. The characteristic parameter 
which enters the effects calculated in Ref. 5, such as 
that in Eq. (2.3) above, is 

a/(2jfes). (2.5) 

Aside from the factor l / (2s) , this parameter is pro
portional to the ratio of the wavelength at an infinite 
distance to the characteristic length 1/a, in qualitative 
agreement with the consideration of the possibility of 
wave-packet localization. 

An extension of the QM treatment in Ref. 5 in
cluding the effects of the capturing nucleus without the 
employment of the 5-function potential has been briefly 
described in Ref. 8. The arrangement of the calculation 
is similar to that of the SC calculation in Ref. 2 re
garding the employment of the adiabatic functions u, 
v representing the condition of the nucleons for fixed 
positions of the centers of mass of the aggregates a and 
b. Instead of being multiplied by time-dependent 
coefficients as in Ref. 2, the adiabatic functions are 
multiplied, however, by functions of the vector dis
placement r from a to b. The presentation in Ref. 8 
points out some of the main assumptions that have 
been made in arriving at the final forms but the 
enumeration of the various omissions is involved and 
incomplete. The generality of the treatment regarding 
the inclusion of many-body features of the problem 
may also not have been apparent from Ref. 8. The 
derivation will now be restated in an improved form. 

The wave function of the whole system is approxi
mated by 

^~u«(rc,r,q)ta(r)+ub(tc,t,q)xlsb(r). (2.6) 

13 The writer is grateful to Dr. K. W. Chun for communicating 
his very useful result before publication. 
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All coordinates are in the center-of-mass system, the 
transferred neutron is c and its displacement vector is 
rc, q denotes collectively the relative coordinates of the 
system other than those contained in r and rc. In this 
treatment the masses ma, Mb of a and b are supposed 
large in comparison with the mass M of c and the other 
nucleons, an assumption the faults of which will be 
discussed later. I t is therefore possible to group the 
many q according to whether they refer to particles in 
a or b as in Eqs. (7.1) and (7.2) of BE-I. The identity 
of nucleons is not explicitly considered at this point 
but can be taken care of, so far as the tunneling process 
goes in Sec. IV of BE-I. 

The possibility of expressing the function in this 
manner implies not only that the probability of other 
reactions of other types is small but also that the 
probability of other single-nucleon transfer reactions, 
including those involving other states of a and of b is 
sufficiently small to contribute negligibly to wave 
absorption and also to the transfer to one state occur
ring as a result of virtual transfer to another state 
followed by a transition by long-range forces or other 
tunneling transfers. The Coulomb field is one of the 
possible long-range forces. The dominant process for 
low-incident energies or distant collisions generally 
consists of the succession of virtual Coulomb excitation 
by field of b on c in a followed by Coulomb de-excitation 
of c at b by field of a. The potential energies 

) , (2.7) 

between c and a as well as c and b are meant as above, 
without restriction regarding form but it is supposed 
that the range of these interactions is short so that 
between the surfaces of a and b there is a gap within 
which c is force free. The functions ua(rc,r,q), ^6(rc,r,#) 
occurring in (2.6) are the adiabatic functions of BE-I 
which correspond to the solution of the Schrodinger 
equation for fixed positions of the centers of mass of 
the nuclei but whose definition otherwise implies no 
specialization of the general many-body problem. In 
general, the equations satisfied by Ha, ub are 

( # a d - £ < 0 ^ = O , (H&d~Eb)ub=0, 

^ a d = - ( ^ 2 / 2 m c ) A c + F a + Z r 6 + F a c + F & c . " 

The subscript "ad" to E indicates that the Hamiltonian 
is that for adiabatic functions. I t is supposed at this 
point that the consideration of two functions in the 
expansion of ty suffices. This assumption involves an 
approximation which implies for example that tun
neling from the ground state of a to level E2b of b 
followed by tunneling from E2b to level E2a of a and 
then to level Enoib is neglected. Such processes, while 
doubtless negligible at the larger distances, especially 
in the absence of virtual Coulomb excitation (VCE), 
may become more pronounced at the shorter distances. 
Although the equations in Ref. 8 as well as in the present 
presentation are written for two states, one of which is 
mainly associated with a and the other mainly with b 

there is no inherent difficulty in extending the treatment 
to groups of degenerate sublevels of two energy levels 
having energies Ea and Eh. In the limit of r = <*>, these 
correspond to magnetic sublevels of the two-space 
degenerate levels. For simplicity the sums over the 
sublevels will not be dealt with here. This simplifi
cation is legitimate in special cases such as the j-j 
coupling configurations considered in BE-I for N14(N14, 
N13)N15 for which the transfer is essentially isotropic. 
This idealization is useful also because it makes it 
easier to bring out other shortcomings of the theory. 

In the space outside a and b, for the case of a and b 
definitely separated the functions ua, ub have the form 

ua=u(rc,r)<pa(qh- • ',qn)<Pb(qn+i,' • ' , q n + m ) , 

(c>a,c>b) (2.9) 

tib=v(tc,r)<pa(qh' ",qn)(p
b(qn+h' ••,£**.«), 

and on account of assumed isotropy of transfer, the 
argument r of u and v may be replaced by r. As shown 
in BE-I, the adiabatic functions may lead to a slow 
convergence of the perturbation calculation and it is 
for this reason desirable to introduce related but 
different functions as in Eq. (9.3) of BE-I, 

u=uC~vS, v=uS+vC, (2.10) 

S=sinY, C=cos7 , (2.11) 

where y is an angle which is defined in BE-I and is 
called 6 there. The transformation has the qualitative 
significance of making the functions u, v resemble the 
unperturbed functions in the case of large internuclear 
separations. 

The same transformation applied to ua, ub gives 
functions ug, vg which are applicable also if c is inside 
either a or b. The subscript g is meant to indicate the 
more general applicability of the functions. Since the 
angle 7 is a function of r only it is not affected by the 
operators of the Hamiltonians Ha) Hb which refer to 
the internal motions of particles within a and b, 
respectively, and commutes therefore with Ha+Hh. 
Making use of this property as well as of [Ac ,7] = 0, it 
is then found by a short calculation that 

(H&d-E«)ug+ (W(3/2M)vg=0, 

(ti*P/2M)ug+(Had-E
b)vg=0, (2.12) 

where as in BE-I the energies Ea, E'b are the values of 
Ea, Eb for r = 00. The quantity /3 as introduced in 
BE-I through Eq. (4.9), depends on the barrier pene
tration factors and the reduced widths of the neutron 
in the channel in which it leaves a and arrives at b. 
Within certain approximations described in BE-I an 
explicit expression for the N14(N14,N13)N15 reaction is 
given in Eq. (24.1) of BE-I. The precise form of 0 does 
not matter for the present discussion, but the fact that 
it depends on r as [exp(—ar)~]/r will be used. The 
reduction of /3 to a form characterizing the interior 
regions of the two nuclei entirely by means of reduced 
widths is possible oaly if the Q value of the reaction is 
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close to zero. If this is not the case, Eqs. (4.1) and (4.2) 
of BE-I, which introduce the reduced widths through 
essentially their reciprocals Xi, X2 do not suffice for 
expressing the differences in logarithmic derivatives 
occurring on the left-hand side of BE-I. In place of Xi, 
X2 there enter quotients of finite differences in the 
logarithmic derivatives to energy differences. Such 
quotients are not directly expressible in terms of 
densities at the nuclear surface but related expressions 
involving averages over energy intervals exist. Intro
ducing functions \j/u, $v by means of 

ti^a + tih\l/h=Ug4'U+Vg\l'V (2.13) 

and substituting the approximate ^ of (2.6) in the 
Schrodinger equation 

(H-E)¥=0, (2.14) 
where 

H=Had+Vab(r)- (fi2/2fx)At, (2.15) 

with u standing for the reduced mass of relative motion 
of a and b and with Vab(r) representing the central 
potential acting between a and b, such as the Coulomb 
potential, there results 

/ h2 

L 

\ 2u 

-At+Vai>+E"-E • V « -
h2 

2M 2/x 

X {(ug,ZAr,u , ] ) # „ + (tig,ZAr,v0D$v} = 0, (2.16) 

together with the result of interchanging a with b and 
u with v. Here and below the inner products indicated 
by the symbol (X,Y) are taken over all coordinates 
except the three components of r. Thus, 

(X - , » - / . X*Ydtcdqv • -dqn (2.16') 

Evaluation of the commutators gives 

r f? 
Ar 

L 2a 
+ Vab-Ea+— 

2)x 2/x 

+— 
2M 

/ (VtUgfdqdXc Wu 

M 
-0 (ug,(ArvgJ) 

2M 

[- -Ar+Vah~Eb+ 
h2 

fe,(V^l)-Vr fc = 0, (2.17) 

2u 

+-2M 

h f 1 -
— / (yrVgfdqdtc Uv 

M 
-0 (vg,(AtugJ) 

2M ] _ 

M J 

EQ=E-E% Eb=E~EK 

0, 

(2.18) 

These equations are somewhat similar in content to 
the first equation in slide 2 of Ref. 8 and the equation 
obtainable from it by interchanging a and b throughout. 
Equations essentially identical in form with those of 
(2.17) have in fact been first obtained by Dr. K. W. 
Chun employing the equation of slide 2 of Ref. 8 and 
transforming it to the barred variables.13 There is 
actually a difference in the content of these results from 
that of (2.17) because the functions ug, vg are defined 
not only for c being outside both a and b but also for c 
being inside one of these nuclei, i.e., ug, vg are introduced 
here by the same linear transformations as u, v but in 
terms of the complete adiabatic functions Ha, Hb rather 
than the u, v of (2.9). In obtaining (2.17) use is made 
of the orthonormality of ug and vg which leads to 

(Ug, (VtVg})+ (Vg, (VTUgJ) = 0 , (2.19) 

the functions ug, vg being chosen to be real. Here as 
well as in (2.17) the ( j indicate that the differential 
operator in ( } is applied only to the quantity on its 
right in ( f. Equation (2.19) leads to opposite signs 
of the last terms in the two parts of (2.17). If (ilg, 
( V r ^ l ) and V r were commuting operators this re
lationship of signs would lead directly to reciprocity 
of a reaction and its inverse. In fact, neglecting the lack 
of commutativity the effective Hamiltonian for a two-
component wave function with components \^u, $v has 
a Hermitian structure of the off-diagonal elements 
contributed by 0 and the last terms in curly braces. 
However, since the factors in the latter terms do not 
commute the verification of reciprocity necessitates the 
consideration of both terms of order M/fx in each of 
the curly braces and is readily carried out. I t follows 
more obviously, however, from Eq. (2.16) and the result 
of the interchanges (a,6), (u,v) in the latter. In this 
form it is a consequence of the identity 

/ 
l^u*(uoA^^-MvgAtilg)^u*yt=0. (2.190 

If the mass of the nucleon M is supposed small in 
comparison with the masses of the nuclei a and 6, an 
approximation to (2.17) is obtained by neglecting the 
terms in M/LL in the curly braces. This approximation 
is of the same type as in BE-I where the orbits were 
not supposed to be affected by the transfer process. In 
this approximation, and neglecting the integrals in the 
square brackets of (2.17) for the same reason 

L 2fx J 2M 

[ At+Vah-Eh\v = 

h2 

2M 

W 
(2.20) 

as in slide 5 of Ref. 8. Assuming that the incident wave 
contains only u# and that the transfer probability is 
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small, one may use for \fru the solution of the first of the 
two equations in (2.20) neglecting the right-hand side 
with appropriate boundary conditions which, in the 
case of a Coulombian Vab, amount to the employment 
for $u of 

0«=*(+)fa,M (2.21) 
of Eq. (2.2). By standard methods the substitution of 
this approximate value in the second part of (2.20) 
gives the asymptotic form of $v at large r as 

& —/<,<->(+) exp{i[V-i?/ ln(2ft/r)]}, (2.22) 
4irMr 

in the notation of Ref. 8. Here 

/„(-)(+>= ^^*(^ / ,k / ,r)/?(^(+)(^,k,,r)(/r, (2.23) 

which within a constant of proportionality is I0(d) of 
Eq. (2.2). Since fi(r) does not contain the incident 
energy, both the angular and the energy dependence 
of the collision cross section are such as correspond to 
the 84unction potential used in Ref. 5. 

III. THE DYNAMIC REACTIONS 

The terms in (2.17) neglected in obtaining (2.20) are 
caused by the interaction of the relative motion of a 
and b with the motion described by the adiabatic 
functions and those described in terms of the coordi
nates rc, q. In this sense these terms are concerned with 
the dynamic reaction of the r motion on the motion of 
the transferred nucleon and on the motion of nucleons 
contained in a and b. The dynamic reaction terms have 
been neglected in BE-I and in Ref. 8 but have been 
briefly considered in Ref. 9 in a semiclassical analogy. 

The dynamic reaction terms occurring in the square 
brackets in (2.17) have an effect like that of a change in 
Vab- Since there are other reasons such as nuclear 
polarizability for considering Vab as not being exactly 
the Coulomb potential and since such effects are 
difficult to estimate with certainty they will not be 
discussed further here, their consideration being in
separable from that of elastic scattering. The dynamic 
reaction terms in curly braces in (2.17) add themselves 
to (3 and thus contribute directly to the nucleon transfer. 
They contain the coefficient M/\x which has the value 
| in the case of N14(N14,N13)N15 and is not truly small. 
The neglect of the dynamic reaction terms on nucleon 
transfer probability cannot be justified therefore on 
the grounds of the smallness of M/n alone. 

The dynamic reactions depend on the ratio of the 
masses ma and mb of a and b to each other, quite apart 
from the unavoidable connection of ma and mb with 
the nuclear structure of a and b. Thus, even if there 
were no important change in the adiabatic wave func
tions u, v, but if the masses oiaoxb which do not affect 

strongly the important parts of u and v were changed, 
an effect would result on the dynamic reaction terms 
as below. The adiabatic functions u, v should have as 
their arguments any set of relative coordinates which 
correspond to the separation of the cm. These coordi
nates may be introduced by first replacing the coordi
nates of individual particles in a by those of the center 
of mass of a and the relative coordinates of particles in 
a by well-known procedures. Similarly, the relative 
coordinates of particles in b and the center-of-mass 
coordinates of b can be introduced. For the sake of 
simplicity the smallness of M/ma and M/trib will be 
made use of in presenting the particular point under 
discussion to the extent of neglecting the effect of the 
transferred neutron on the position of the center of 
mass of the whole system. The inclusion of this effect 
would result in a modification of the terms in curly 
braces in (2.18) containing the factor M/fi to the 
relative order M/JJ, and a qualitative idea of the effect 
of these terms can be obtained without a complete 
calculation. In this approximation the difference 
between the two coordinates intended for the initial 
and final states in BE-II need not be considered. 

If ma=tnb, the relative coordinates p= (£,i?,f) con
taining rc may be introduced by referring the position 
of c to the center of mass of a and b so that 

e = r , - ( r / 2 ) . (3.1) 

If ma9^mh the coordinates of c referred to center of 
mass of a and b are 

9'= ti',v',n = r . - R , (3.2) 
where 

R=w&r/w, fn=ma-\-nib. (3>3) 

Referring to (r,j>) as the old and to (r,p') as the new 
coordinates and designating partial differentiations in 
these two systems by o and n, respectively, 

/ d \ ( d mb—ma d\ 
[ — ) = ( — + , (3.4) 
\dx/n \dx 2m d£/0 

(d/d£)n=(d/d£)0. (3.5) 

According to (3.4) terms containing (VTvg} and (ATug} 
in (2.17) become modified through the inclusion of 
terms involving (V pvg} and (Apug}. Since $u is a func
tion of r only, the V r ^ remains unchanged in the 
equation. Equation (2.17) is thus affected by mh—ma, 
Since the motions of nucleons within a and b are affected 
by the accelerations of a and b as they move about 
their center of mass this situation is a natural one. The 
dynamic effects under consideration are in this sense 
acceleration effects and have been referred to as such 
in Refs. 8 and 9. The terms corresponding to these 
terms in the SC calculation in BE-I have been neg
lected there. They are formally of the order of mag
nitude Mfi/n, not truly negligible in comparison with 
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the first term in curly braces in (2.17). The qualitative 
reason for the entrance of barrier penetration factors in 
(vg,(AtUgJ) and (vgy(VTUgJ) in much the same way as 
in p is that even though ug and vg are orthogonal to 
each other according to (2.10), the change in ug caused 
by a change in r is not orthogonal to vg and that the 
important change occurs where vg is large, i.e., in b 
which is reached by the tail of the changed ug by barrier 
penetration from a. 

I t is not immediately obvious from (2.17) and (2.18) 
that the dynamic reaction terms satisfy reciprocity. 
In fact neither of the two sets of terms in M/JJL in the 
curly braces taken separately satisfies it. The different 
signs of the terms containing a free V r produce at first 
sight the false impression of furnishing a Hermitian 
operator on the two-component wave function $u, $„. 
On the other hand, the two coupled equations on $u, 
$v one of which is (2.16) allow an easy verification of 
reciprocity making use of two partial integrations. 
Since (2.17) is obtained from (2.16) they also satisfy 
reciprocity as may be verified by using the quantities 
in curly braces as a whole. By means of (2.16) it is seen 
that reciprocity is not affected by the dynamic reaction 
terms also if m^m^ 

The qualitative character of the dynamic reaction 
terms may be illustrated by means of the following 
one-dimensional problem. The particle c is supposed to 
be free to move in a straight line. At points x c = 0 and 
xc=x it is acted on by 5-function potentials of equal 
strength. In terms of the variable £ used earlier in this 
section the adiabatic functions satisfy the boundary 
conditions 

dw 

wd% 

<*/2)+o dw 

(aj/2)-0 Wd% 

-(*/2)-f0 
= —2ao, w=(uor v). (3.6) 

- (z/2)-0 

The symmetric and antisymmetric solutions are identi
fied with u and v, respectively. In the line segment 
between the two potentials 

u=N+ cosh (ct+£), v=N- sinh (a__£), 

(-x/2<%<w/2), 
(3.7) 

where N+, N- are normalization constants. Continuing 
these functions in the intervals (—<*>, —x/2) and 
(x/2, oo) by means of (3.6) and requiring that u and v 
vanish at <*> there result conditions on a + and «_ as 
follows: 

04.=«o[l+exp (—«+&)], 

a- = ao[l — exp(—oL-x)2* (3.8) 

The values of the normalization constants are then also 
obtained as 

If 

# + = {2o^/ll+oL^+exp(oL^J}112, 
7V_={2oL./[-l-o:-X+exp(«_x)]}1 /2 . (3.9) 

r=exp(—«ox)<<Cl, (3.10) 

then from (3.8), to within the first order of r , 

a f
2 = a 0

2 ( l + 2 r ) , aJ = aQ
2(l-2r). (3.11) 

Maintaining the same relation between /3 and a0, a+, au 
as in BE-L 

i3 = 2ao2T. 

The functions u, v may also be expressed as 

u=NuIu, v=NvIv, 
where 

and 

Nu= (a+/ir)N+ exp(cq_#/2), 

Nv= (-ia-/ir)N- exp(a_x/2) 

+«V»* cos (cox/2) 

/•+00 eia* sir w — 
a+

2+co2 

+00 6*M* sin (cox/2) 

-dco, 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

-da). 

These forms of u and v are convenient for calculation, 
applying for all J and not just to a finite interval as is 
the case for (3.7). The functions 

u=2-V*(u-v), v=2-U*(u+v) (3.16) 

have the special values 

^= o o=ce 0
1 / 2exp(—a 0 |£+ff /2 | ) , 

y ^ ^ a o 1 7 2 e x p ( - a o | £ - s / 2 | ) , (3.17) 

so that for infinite separation of the potential wells, the 
states u and v are concentrated on the left and right 
potential wells, respectively. From (3.15), it follows 
that 

(u,dv/dx) = 09 (v,du/dx) = 0, (3.18) 

the integrand of the integral over co being odd after the 
integration over J is performed. From (3.18) and (3.16), 

(u,dv/dx) = 0, (v,du/dx) = 0. (3.180 

I t is also found that 

(u,d2v/dx2) = 0(r2) (3.19) 

and hence all terms of order M/jx in curly braces of the 
second equation in (2.17) are of higher order in r than 
the term —/3, provided mh—ma is negligible. For non-
negligible (mb-ma)/m, employing (3.4) and (3.5), the 
terms in curly braces in the one-dimensional analog of 
(2.17) combine to 

W 

2M 
p{l- (M/fx)lmb(mh~ma)/2m22(i-~aox) 

- {M/ix)l(mh-ma)/2m]xd/dx}, (3.20) 

where terms of higher order in r than the first have 
been dropped. In the N14(N14,N18)N15 reaction 
| ( w 5 - w 0 ) / w | = l / 2 7 while Af/ /x«l /7 . The product 
of the two factors is small and formally one may expect 
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the effects caused by the extra terms to be small in this 
case. But for Mg26(N14,N13)Mg27, \(mb-ma)/m\=$9 

M//m~1/9.1 and without closer investigation it appears 
unjustifiable to claim that these effects are negligible. 
The presence of x in the second term in curly braces in 
(3.20) and of xd/dx in the third indicate a different 
energy dependence from that of the main term and are 
an additional reason for caution regarding neglecting 
the dynamic reaction terms. The one-dimensional 
example cannot be expected to be a quantitative guide 
for the three-dimensional situation but the relative 
order of magnitude of the three terms depends on the 
action of the tails of the wave functions in both cases. 

The term containing V r ^ in (2.18) represents an 
effect of the momentum of relative motion of a and b. 
If ( 2 - 0 , the factor e™* in Eq. (24.2) of BE-I, which 
furnishes the transition amplitude, is unity and for a 
head-on collision the contribution of the term in 
question is proportional to 

\r(u,Dv/Dr)dt, (3.21) 

where D/Dr is the derivative with respect to r keeping 
y of BE-I constant. Taking the origin of t at the turning 
point, f is antisymmetric in t while the remaining factor 
of the integrand in (3.21) is symmetric. Therefore, the 
term vanishes. If Q^Q the imaginary part of eiwt gives 
a contribution to the integrand which is symmetric in t 
and a nonvanishing effect of the term in r results as 
mentioned at Asilomar.9 This term is 90° out of phase 
with the main one and produces therefore insignificant 
effects when small compared to the principal term. I t 
has not been shown that it is negligible in general. 
Since, as discussed shortly before Eq. (3.5), the validity 
of reciprocity depends on the combined effect of both 
terms involving M/ix in the curly braces the separate 
consideration of the two terms gives only a partial view 
of the problem. 

IV. INTERNAL ANGULAR MOMENTUM EFFECTS 

The calculations in BE-I have been carried out in 
detail for special configurations of nucleons in N14 and 
N15. For these the spatial dependence of the tunneling 
effect on the cross section was expressible in terms of 
(1/r) exp(-ar). In general, the r dependence involves 
additional powers of 1/r combined with angular func
tions. The presence of additional powers of 1/r matters 

p 

y ^ \ FIG. 1. Angles, dis-
r0 s' \ r b tances, and quanti-

Js \ zation axes used 
y ' \ in calculations of 

S\Q T ^ b / \ angular momentum 
Oa S \ ° * L_A o b effects. 

Z b - ™ 

. _ ^ za 

for quantitative comparisons of the energy dependence 
of the cross section and the angular distribution. 

The wave function of a nucleon originally in the right 
nucleus b with angular momentum lb and magnetic 
quantum number mh is, within a constant factor, 

rh~mKi(h)+$(arh)Yi(}>)m(b)(6b,<Pb) 

a)m(a) (6a,<Po), (4.1) 

where rb, 6b, cpb are polar coordinates of point P in Fig. 
1, referred to the polar axis Obzb which is directed from 
the center of nucleus b to the center of nucleus a. For 
convenience of printing the quantities lb, mh, la, ma are 
written as 1(b), m(b), 1(a), m(a) in subscripts and 
superscripts. Disregarding spin orientations the capture 
of a nucleon from the state of Eq. (4.1) into a state of 
nucleus a of aximuthal quantum number la and mag
netic quantum number ma depends on the coefficients 
of the Yi(a)m(a)(Oa,<Pa) in the expansion of the wave 
function in (4.1). The expansion is complicated in the 
general case but a qualitative idea of the relative im
portance of different terms can be obtained if ar3>l, 
ab2>l where b is the nuclear radius. In this case14 one 
may approximate at the surface of a 

rb~
1,2KHb)+^(arb)^ a(r) exp(aVtt cos0), 

a'=ar/(r-ra), (4.2) 
and 

a(r) = t(7r/2ar>/(r-ra)l 

Xexp{-a[r+ra*/(r-ra)l}. (4.3) 

This approximation is obtained by means of the asymp
totic form of Ki±$(arb) approximating rb in exp(—arb) 
as 

rb=t(r-ra¥+2rra(l-cosd)J>2 

^r-ra+[rra/(r-ra)2(l-cosd), (4.4) 

and employing the cruder approximation, 

rb=r—ra, (4.5) 

in the denominator of the fraction [_exp(—arb)~]/rb. 
The reason for making these approximations is that 
(4.2) is to be used in (4.1) for an analysis in the 
Yi(a)m(a)(Oay(Pa) at fixed ra and that for fixed ra the 
values of [exp(—arb)~]/rb on the sphere ra= const are 
largest close to cos0=l . The main requirement in the 
calculation is therefore to represent the function well 
close to cos0=l and since the dependence on the ex
ponent is the more critical the approximation used for 
the denominator as in (4.5) is the cruder of the two. 
The spherical harmonic factors on the left- and right-
hand sides of Eq. (4.1) also vary and can spoil the 
approximation by making the integrand small in a 
sufficiently large range of values of 8 around 6=0. 

14 The notation for the Bessel functions of imaginary argument 
is as in G. N. Watson, Theory of Bessel Functions (Cambridge 
University Press, Cambridge, 1922). 
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Employment of (4.1) gives 

rjr1,2Kl(b)+,(arb)~(-yw+™WTrj: 
l(2la+l)(2lb+l)JiX(lb+mb) !(/«+*»*)! 

i h \ .(lh-mh)\(la-mh) 

X 

]' 1/2 

[Ha)+ i W 

(2ar) r&+l yl/2 
-Yl(a)m(b)(da,<Pa). (4.6) 

Here Ii+% is the Bessel function of imaginary argument of the first kind and is related to the regular density 
function Fi by 

Fi(ip)/(iwp)=(ir/2Pyml+i(p). (4.7) 

These relations have been mentioned in Ref. 9 but with insufficient explanation concerning the meaning of the 
approximation used. 

For a = 0 the Bessel functions of imaginary argument of the second kind are taken place of by inverse powers 
of r, the wave equation (A—k2)ip=0 being replaced by the Laplace equation. In this case without approximations 

Yvn(6b,<pb) « (X+V) ![(2X ,+ l ) / ( 2 X + l ) ] 1 / V a V - ^ / - 1 F X m ( ^ ^ a ) 

rb 
X'+l [ ( X - w ) \(\+m) \{\f-m) l(Xf+m)!] 1/2 

(4.8) 

The function on the left-hand side is the irregular, i.e., 
the source type, solution of the Poisson equation 
emanating from 0&. I t is represented on the right as a 
sum of solutions regular at r a = 0 , with coefficients that 
are functions of the internuclear distance r. While 
exact, Eq. (4.8) applies only to nucleons having zero 
separation energy, a situation completely opposite to 
that of the approximation used in Eq. (4.6). In both 
cases the expansion coefficients are functions of the 
magnetic quantum number m but in (4.8) the de
pendence on r is w-independent while in (4.6) there is a 
marked m dependence. For zero separation energy, 
according to (4.8) the ratios of coefficients of the 
regular functions for different m are independent of r. 
In this sense the anisotropy is in this case independent 
of the internuclear distance. On the other hand, for 
high nucleon separation energies, according to (4.6) 
the anisotropy depends on r. 

I t is thus seen that there is no reason for expecting 
the e~ar/r function which applies for the special nucleon 
configurations which appeared probable for N14(N14, 
N13)N15 in BE-I to have a general significance. The 
transfer probability amplitude may be expected there
fore to contain additional powers of the distance of 
closest approach in the SC approximation. As a result 
both the angular distribution of the reaction products 
and the energy dependence of the total cross section 
may be expected to differ from those derived by means 
of e~ar/r. This conclusion will be made use of in Sec. 
VI. I t should be mentioned that the approximation of 
(4.2) cannot be expected to be universally good and 
that numerical examination shows it to be poor under 
many circumstances. Nevertheless, the general features 
of (4.6) and the presence of many powers of 1/r remain 
in the improvements. 

Experimental data have been analyzed7-15'16 in terms 
of o-/A2 plots against 

x=a(b1+b2-2a')+a(b1+b2-2a'), (4.9) 

where A is the wavelength for the incident state divided 
by 2w. Here a and a are the space-decay constants of the 
neutron in the initial and final states, &i, b%, and 2a' are 
the radii of the two nuclei and the distance of closest 
approach in the initial state and the barred quantities 
have the corresponding meaning for the final state. 
Similarly, plots of d(r/d(rminA

2) against rmin have been 
used in some data analyses.15 Here rmin is the distance 
of closest approach for a Rutherford orbit corresponding 
to a given angle. In both cases the assumption of the 
applicability of the e~ar/r type function is involved, and 
these ways of analyzing data have therefore only 
qualitative significance. There have been two reasons 
for carrying out this analysis. In the first place, it 
appeared desirable to see whether the bulk of the data 
is in agreement with the general tunneling picture, 
combining the latter with the supposition that for 
angles corresponding to the more distant collisions one 
may neglect forces additional to the Coulombian as 
well as the effects of competing reactions. In this 
application the variation of e~ar/r contained in e~ar is 
often more marked than that in the factor 1/r. The 
presence of large effects other than tunneling may be 
detectable therefore in the approximation used. The 
possibility of virtual Coulomb excitation (VCE) was 
paid particular attention to in Ref. 7. Secondly, it 
appeared desirable to make some obvious improvements 

16 G. Herling, Y. Nishida, and G. Breit, Bull. Am. Phys. Soc. 
5, 293 (1960). 

16 K. S. Toth and E. Newman, Proceedings of the Third Con
ference on Reactions Between Complex Nuclei, Asilomar, 1963 
(University of California Press, Berkeley, 1963), p. 114. 
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in the early attempts to provide a comparison of 
different transfer reactions by means of "universal 
curves" which were first made by Halbert et aL17 A 
removal of the dissymmetry in the roles of the initial 
and final states was made5 earlier but Eqs. (48.100), 
(48.101), and (48.102) of the last-mentioned reference 
contained unnecessary approximations in formulas for 
the total cross section which were avoided in the work 
reported on in Refs. 7 and 15. The starting point was 
however very similar as is seen from (48.79') of Ref. 5 
which has the same meaning as Eq. (4.9) of this paper. 

Another reason for introducing the approximate ex
pressions was the lack of proper symmetry between 
initial and final states which was present in the intro
duction of the da/drmin plots by Mclntyre, Jobes, and 
Watts.18 The results obtained in BE-I employing e~ar/r 
and Q=0 were therefore somewhat arbitrarily general
ized as in Ref. 5. This generalization supposed that 

da/dQ= (C/s3) exp[ - (oa'+oaO/s], (4.10) 

where s is as in (2.4) and C is angle-independent. 
Integration over solid angles gives then 

<r= (87rC/(aa'+ad0) exp( -aa ' - aa ' ) . (4.11) 

On the other hand, as in Ref. 5 and Eq. (4.9) above, it 
is expected that for the total cross section 

a^KA2 exp{-a(2a,-b1-b2)-a(2af-bi-b2)}, (4.12) 

with 

2a 2XiX2\l+o:5i / \ l+a :&2/ 

the latter being taken from BE-I and having a direct 
meaning only for the particular nucleon configurations 
used there. Comparison of (4.11) with (4.12) gives C 
in terms of K. Since, for both the initial and final orbit, 
the minimum distance of closest approach rm{n is 
proportional to 1+1/s, there was introduced a mean 

<rmin>=(a,a,)1/2(l+l/8)- (4-13) 

The relationship between d(rmin) and the solid angle 
dQ, contained between the cones of angular openings 6 
and 6+dd is, according to (2.4), 

d(rmin)= - [(a'aO^V&rs8]^, (4.14) 

and hence, introducing the values of rmin for the initial 
and final orbits 

rm in = a / ( 1 + 1 / S ) , f , m i n = a ' ( l + l / 8 ) 

17 M. L. Halbert, T. H. Handley, J. J. Pinajian, W. H. Webb, 
and A. Zucker, Phys. Rev. 106, 251 (1957). 

18 J. A. Mclntyre, F. C. Jobes, and T. L. Watts, Proceedings of 
the Second Conference on Reactions Between Complex Nuclei, 
Gatlinburg, Tennessee, 1960 (John Wiley & Sons, Inc., New York, 
1960), Paper A-2, p. 16. 

there was obtained 

da KA2 

= (aa'+ad') 
d(rmin) (a'a')1/2 

Xexp[a(6i+62)+a(6i+62)--ocrmiii—afmin]. (4.15) 

The object in introducing these improvements and in 
employing them has been mainly that of taking into 
account approximately the effects of the Q value of 
the reaction. These effects enter through the differences 
between a and a and between a' and a! as in (4.12) and 
(4.15). On the other hand, neither the quantum cor
rections for heavy particle motion nor the expected de
pendence of K on the nucleon configuration have been 
taken into account in the applications of (4.12) and 
(4.15). Since the former of these approximations affects 
the energy and angular dependence and since the proce
dure for symmetrization between the initial and final 
states has not been uniquely established, it appeared 
justifiable to neglect in these comparisons the higher 
powers of r which are expected to enter in the general
ization of the transfer function e~ar/r. 

On the other hand, attempts to decide which method 
of calculation is the better on the basis of comparison 
with experiment without taking into consideration the 
possibility of additional powers of 1/r entering the 
transfer function are obviously meaningless, especially 
in view of the lack of consideration of virtual Coulomb 
excitation and of M/n type terms as will be discussed 
in more detail in Sec. VI. 

V. EXTERNAL ANGULAR MOMENTUM EFFECTS 

In addition to the effects of anisotropy of transfer 
and of the related occurrence of additional powers of 
1/r classical mechanics suggests that the transferred 
nucleon, while still attached to a, possesses an angular 
momentum around b on account of the motion of a+c 
as a whole. By analogy with the Franck-Condon prin
ciple of molecular physics a certain degree of inde
pendence between the relative motion of a with respect 
to b and the motion of c around the combined system 
formed by a and b may be expected. Such an inde
pendence is in fact present in most of the discussion 
in Sec. II of the present paper but is violated by the 
dynamic reaction terms of Eq. (2.17). The effect under 
discussion in this section is concerned with another type 
of violation of this independence. If the angular mo
mentum of c around b, owing to the motion of c along 
with a, matches the angular momentum of an available 
state of c in b, the transfer to the state in b may be 
expected to be favored. In order to be significant, the 
matching has to occur approximately at the distance 
fmin because the tunneling is most pronounced for this 
value of r. In this respect the consideration is similar to 
that used in applications of the Franck-Condon prin
ciple. The way in which this occurs in a quantum-
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mechanical treatment of angular momenta may be 
illustrated in a simple example. 

As in BE-II, two sets of relative coordinates are 
appropriate: one for the condition of the system in 
which c is attached to a, one for that in which it is 
attached to b. This complication is minimized in the 
special case of m&= oo. To simplify conditions still 
further la, the angular momentum of c while in a, will 
be taken as la=0- If L the angular momentum of a+c 
with respect to b, is oriented along the axis of quanti
zation the wave function representing the motion of 
the center of mass of c and a with respect to b may be 
written 

^ca,b= Z(%ca,b+iyca,h)/rca,b]LRca,b(rca,b) . ( 5 .1 ) 

Here the difference in the x coordinates of the 
center of mass of c and a and the coordinates of b and 
the axis of quantization is perpendicular to rca,&. 
Similarly for yca,b, and rca,b is the absolute value of the 
vector xca,b having components %ca,bj yea,by %ca,b* Since 
mb= oo, one may set xb=yb=Zb=0 so that 

%ca,b= (maXa+mcxc)/mac, ntac=nia+mc. (5.2) 

Substituting into (5.1) 

^ C a . b = E ( - ) ( — ) ( — ) (oca+iya)
L-8 

* \ s J \macJ \maJ 

X (%c+iyc)sRca,b(rca>b)/rca,b
L. (5.3) 

If c is tightly bound to a and if rca,b is not too small, the 
square of the absolute value of the wave function is 
small unless 

Tea/rca, 6 « 1 . (5.4) 

Under these conditions, the factor {xa
Jriya)

L~s{xc
Jriy^s 

is insensitive to s and will be treated as a constant. If 

w c / ( m a + w c ) « l , (5.5) 

the variation of successive terms in (5.3) with s is 
contained in the factor 

LI /mc\
s 

) . (5.6) 
sl(L—s)\\mac/ 

Approximating logarithms of the factorials by means 
of Stirling's series with neglect of the term in l/(\2n) 
for \ogn the condition for a maximum on the supposition 
that ( s / L ) « l , Ly>\ becomes 

s/L^mc/mac. (5.7) 

Had one set 

sfi=mcvR, Lfi=macvR (5.8) 

on the classical picture of the two angular momentum 
components under discussion corresponding either to 

mass mc or mass ma-\-mc moving with the same velocity 
v and at the same distance R around the center of b, one 
would have obtained the same value of the ratio s/L 
as in (5.7). 

Equations (5.1) to (5.7) thus show that for s states 
of relative motion of c with respect to a, for ra&= oo, 
and with the restrictions imposed in (5.4) and (5.5), 
the maximum probability of a state with angular 
momentum projection sfi occurs at the classical me
chanics value of the angular momentum projection. 
In calculating the quantum mechanical probability 
the variability of the two factors containing the com
binations x+iy was disregarded making use of the 
supposed spatially condensed nature of the wave 
function of relative motion of c with respect to a. Had 
this assumption not been made, a diffuseness in the 
condition (5.7) would have been introduced. Some 
diffuseness in the correspondence of the probable 
quantum values to the classical picture, expressed by 
(5.8), is present besides because the expression listed in 
Eq. (5.6) does not have a sharp maximum. Under the 
assumptions made, the width of the square of the 
quantity in (5.6) i s Srr^^j where m indicates value at the 
maximum, the measure of the width used being a 
decrease to 1/e of value at maximum in going to either 
side of sm by the "width." 

The choice of the factor used in (5.6) may appear 
arbitrary because the powers of xca>i+iyca,b and of 
xc+iyc in (5.1) and (5.3) do not occur with the same 
numerical coefficients as in the normalized spherical 
harmonics. If the calculation is made in terms of the 
latter the quantity replacing that in (5.6) is 

2sLl /mc\
s 

— , (5.60 
(L-s)l(2s+l)\JiAmJ 

the position of the maximum in the mc/m<^l, L2>1 
approximation is 

(sm+^)/L-mc/mac, (5.70 

and the square of the quantity in (5.60 is approxi
mately proportional to 

exp{—(s—sm)2/(sm+%)} , 

the width of the transfer probability maximum as a 
function of transferred orbital angular momentum 
being now ( s m + | ) 1 / 2 in the same sense as it was sm

1/2 

before. The conclusions are seen to be rather insensitive 
to the change in convention regarding normalization. 
Some of the anomaly in the behavior of Pb207(N14, 
Ni3)Pb208 a n d pb2°8(N14,N13)Pb209 observed by Watts 
and Mclntyre may be caused perhaps by the partici
pation of the effect of selection of a band of angular 
momenta in a manner just discussed. If the neutron is 
not in an s state initially, an additional diffuseness of 
the maximum may be expected. 
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VI. TRANSITION TO SEMICLASSICAL THEORY 
AND SMALL-ANGLE LIMIT 

At low energies the interactions between a-\-c with 
b initially and of a with b-\-c finally may be expected 
to be predominantly Coulombian. In this limit the 
integral Ip{~+) of Eq. (2.23) becomes a multiple of /o(0) 
of Eq. (2.2). In the special case of equal initial and final 
energies, on the basis of Ter-Martirosyan's results 
employing the collection of formulas in Ref. 5, 

^ ' S f 
| / o (* ) |= expl 2?? tan~L 

Ik 
27T7; ! 

L a J J 

X 
F(iy,iy> l ; 

i+r 
- f ) 

where 

The quantity 

f=4£2s2 /a2 . 

(l+WFdtoirHiU-t) 

(6.1) 

(6.2) 

may be evaluated by employing an analytic continu
ation of the hypergeometric series in powers of l / ( l + f ) . 
Taking the limit of this series for £=7/2—5/1=0, there 
results the relation 

( l + r ) ' ' F ( f l , , t i , ; l ; - r ) 

2/r/2 

|r(«?) 4 o L 
ln(l+f)-

V(s+it)) 

2T(s+iV) 

T'(l+s-iv) T'(l+s) 

2T(l+s-iv) T(l+s) 

T(s+ir,)T(l+s-ifi)/ 1 
X 

[r(i+*)]2 & ) 
(6.3) 

The passage to the classical limit employed in the 
semiclassical treatment (SCT) requires keeping 

7j/k = af (6.4) 

finite and approaching a constant, while TJ and k ap
proach oo. In this way curves normal to wave fronts 
become eventually the rays of geometrical optics, i.e., 
the classical orbits. In this limit19 

l i m ( l + f ) ^ ( ^ , ^ ; l ; - f ) = 
2i/v 

Here 

*=2 i ? ( l+ f ) - •1/2. 

|r(^)|2 

( 7 7 = 0 0 ) . 

>a'ae, e = l / s , 

(6.5) 

(6.6) 

19 The writer is indebted to Dr. S. Ohnuma and Dr. C. R. Fischer 
for their check on Eqs. (6.3) and (6.4) a few years ago in another 
connection, and for having found an error in the first calculation 
of the limit in Eq. (6.5). 

where the quantity to the right of the arrow is the 
result of taking the same limit as in (6.5). From Eqs. 
(6.1) and (6.5) 

Kofaa'e) 
l im| / o (0) | = 7 r 1 ^ [ e x p ( - W ) ] . (6.7) 

&2s2 

This gives, therefore, 

— = [Kv(aare)J exp(-2aa'). 
dQ z>6s4 

(6.8) 

in agreement with the exact evaluation of the angular 
dependence according to the SCT in Eq. (23) of BE-I. 
The dependence on v also checks if the first of the two 
forms for the probability | dv ( + oo) |2 listed in Eq. (25) 
of BE-I is employed. Similarly, the constant of pro
portionality C is readily verified to be the same in the 
QM and the SCT. The agreements just mentioned are 
natural and follow from general principles discussed by 
means of Fig. 2 and Eqs. (18) to (19.4), pp. 694, 695 of 
BE-I. 

For 0<3Cl, the Bessel function of imaginary argument 
of the second kind Ko approaches its asymptotic form 
for large values of the argument, and accordingly, 

Ar/<K2« (C'/Vs3) e x p [ - 2 a a ' ( l + e ) ] , (6.9) 

where C" is a constant. If, in this form, one makes a-^0, 
the angular dependence is as 1/s3, and is not the same 
as that for Rutherford scattering. I t is claimed on the 
other hand by Greider20 that, in the limit of « = 0, the 
factor multiplying exponentials behaving with angle 
much like that in (6.9) should approach proportionality 
to 1/s4 because agreement with the Rutherford-
Coulomb scattering angular dependence would result 
for such a dependence. The expectation of agreement 
with the Coulomb-scattering law appears to be inherent 
in the approach of Ref. 20, which neglects the dis
tortion operators in the evaluation of the formulas. 
The agreement of the QM and the SCT verified above21 

shows, however, that the distortion of the wave by the 
Coulomb field is very important, the main transfer 
occurring in the SCT near the point of closest approach 
along the orbit. According to Fig. 2 of BE-I, this point 
lies in the region in which the distortion of the plane 
wave by the Coulomb field is relatively large. 

Equation (6.9) was obtained from the more exact 
(6.8) by going to small 0. The comparison with the 
Rutherford law then took place by making a —> 0 and 
neglecting 2aaf(l+e) in the exponential function. Such 
a comparison contradicts, however, the assumption 
made in obtaining (6.9), viz., thatao/e^M. This assump
tion was used in replacing K0 by its asymptotic value 
for large values of the argument. Thus, the derivation 

20 K. R. Greider, Phys. Rev. 133, B1483 (1964); Phys. Rev. 
Letters 9, 392 (1962). 

21 This agreement and the agreement of both theories with the 
angular dependence expected for the Rutherford cross section 
was communicated to the author of Ref. 20 by the writer of the 
present paper before the publication of Ref. 20. 
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of Eq. (6.9) breaks down for sufficiently small a even 
in the semiclassical limit. 

The employment of the SCT limit by means of (6.4) 
need not give the QM limit for 6 —»0 for the actual 
situation, however, because it implies the passage to 
infinite values of the momentum fiv, a limit which can 
be secured by making JJ, infinite but does not correspond 
to reality. The SCT limit makes use of a finite v so that 
fiv cannot be made infinite by making v= <*>. For fixed 
JJ, v, and 6 the behavior of da/dti is obtainable from (6.3). 
Since, for a —> 0, the quantity f —> oo and 

ln(4£2s2/a2) 
| / 7 f a , ^ ; l ; - f ) | ^ _ — — — , ( a - > 0 ) . (6.10) 

v\r(irj)\* 

The limiting form of | / o | is, accordingly, 

Tll27] / 4 & 2 S 2 \ 

| Jo (0 ) | -» ( l - * - 2 - 0 1 n ( I , ( a - > 0 ) . (6.11) 
2£2s2 \ a2 / 

If a assumes values such that | ln(l/a2) |^>|ln(4&2s2) | , 
the differential cross section which varies as | /o(0)| 
has the same angular dependence as that for Rutherford 
scattering. Agreement with the latter is thus obtained 
for a —> 0 in the quantum-mechanical treatment. The 
passage to the limit a—> 0, 6—>0 is seen to be not 
uniquely defined. In fact, if a is kept fixed and 0 —> 0, 
then f —> 0 and F(irj, it\; 1; — f) —» 1. In this limit 

| Jo (0)| - » (47r3/2/a2) expf 277 tan"1 2m; J , 

(0 -»O) . (6.12) 

The exponential function is in practice nearly exp(—7rrj 
—aar) and the cross section is quite small on account 
of the factor exp(—271-77). Nevertheless, it is seen that 
the limit depends on the order in which a and 0 are 
made to approach zero. 

Passage to the limit a=0 as in (6.10) and (6.11) has 
a definite mathematical meaning but the physical 
assumptions justifying the use of perturbation theory 
are violated since the interaction is not weak when the 
nucleon separation energy is small. The infinite value 
of | /o(0)| which results for a = 0 implies this as well. 
For a —» 0, the SCT also gives a logarithmic term since 

\K0(aafe)\2-> [ l n ( a a 7 2 s ) + 7 ] 2 , (6.13) 

and the velocity as well as s occur with the same 
powers in (6.8) and in (6.11). In this respect there is 
agreement between the SC and the QM approaches21 

and there is thus no reason for mistrusting the SC 
result on the alleged grounds of disagreement with the 
angular dependence expected from Rutherford's scat
tering formula. In summary, there is a logarithmic 
dependence on s = sin (0/2), but as a—»0 in any fixed 
range of 0 excluding 0=0 , one can make a small enough 

to give the Rutherford dependence of the cross section 
on 0. On the other hand for fixed a one can make 0 
small enough to make Ins interfere with the agreement. 
But if 0 is small enough, the argument of KQ, viz., 
aa'e2>l and Ins has little bearing on the value of K0 

which is then approximated better employing the 
asymptotic exponential form as in (6.9). In this limit 
the critical variation of the impact parameter (P °c 1/s 
with 0 dominating the transfer process since the latter 
depends primarily on the value of e~aR/R with R corre
sponding to closest approach. 

I t is seen from the above discussion that the argu
ment concerning the limit a —-> 0 in Sec. V of Ref. 20 
is not valid. On the other hand, Ref. 20 lays stress on 
the improvement in the agreement with experiment 
that is obtained on account of the extra factor A in 
Eq. (42) of that reference. This emphasis on preference 
between different approximations to the solution of 
essentially the same equations on the basis of agreement 
with experiment is being made both in Sec. IV on p . 
B1492 and in Sec. V of Ref. 20. At the same time, Ref. 
20 is critical of the work of Ter-Martirosyan11 and of 
Biedenharn, Boyer, and Goldstein12 regarding the limit 
which the results in these two references approach when 
a—»0, and also regarding the derivations used. By 
implication it is also critical of the applicability of the 
quantum corrections to the SCT which have been used 
by the writer.5 The discussion in the present section 
shows, however, that from the point of view of the form 
of the answer all of these treatments behave properly 
at small 0 and small a except for defects having their 
origin in the largeness of the transfer probability which 
cannot be corrected by inserting a factor l/sin(0/2) in 
the formula for a (6) as Ref. 20 recommends. 

I t will be noted, however, that the dissymmetry 
caused by the introduction of the zero-range interaction 
in Refs. 11 and 12 is not present in the quantum treat
ments presented at the Padua8 and Asilomar9 con
ferences and explained more systematically in the 
present paper. Even though the treatment of quantum 
corrections presented in Ref. 5 has made use of a zero-
range interaction unsymmetrically and employed the 
integral evaluations of Ref. 11 this was done only to 
ascertain the ratio of QM and SCT results for the 
zero-range interaction. Otherwise, reliance was put on 
the treatment in BE-I which is free of the dissymmetry 
inherent in the use of the d-iunction potential. On the 
other hand, at energies much below the Coulomb 
barrier the same differences between a classical orbit 
(SCT) and a wave-mechanical (QM) treatment of the 
motion of the heavy nucleus enter for the symmetrical 
treatment of emitter and receiver nuclei and for the 
short-range unsymmetrical one. The application of the 
correction factor to the results in BE-I could be ex
pected therefore to be adequate. This expectation is 
borne out by the work in Refs. 8, 9, and the present 
paper. On the other hand, the possible presence of 
virtual Coulomb excitation as well &s the various other 
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effects discussed in Refs. 8 and 9 as well as here make a 
judgment, regarding correctness of calculations which 
do not take these effects into account on the basis of 
comparison with measurements, inadequate. It may 
also be mentioned that according to Ref. 22 the straight
forward application of Eq. (6.1) employing the steepest 
descents approximation to the hypergeometric function 
according to Ref. 11 in the adaptation to the heavy ion 
case as in Ref. 5 gives a reasonable representation of 
experimental data on NL4(N14,N13)N15 at 12.3-MeV bom
barding energy. This treatment is more accurate in 
detail than that in Ref. 9 but is similar to the latter in 
the essential points. The claim made in Ref. 20 con
cerning the steepest descents treatment of Ter-
Martirosyan being insufficient for the determination 
of the phase factor of the wave is correct only in the 
most literal and not an essential sense since the steepest 
descents integral over the saddle point furnishes the 
steepest descents approximation to the hypergeometric 
function including the phase factor. The result of this 
integration was used in Ref. 22. 

The presentation in Ref. 20 makes use of an s-state 
wave function for the transferred nucleon without 
justification. The neutron actually transferred in the 
reaction discussed can hardly be an s neutron in any 
ordinary sense. A partial justification for such a pro
cedure is contained in BE-I. It is shown in that paper 
that for special coupling conditions of the ^-shell 
neutrons, the net effect on energy and angular de
pendence of their transfer is such as though an s-state 
neutron were transferred. The jj coupling assumed in 
BE-I is only an approximation to the actual one, how
ever, and the additional powers of 1/r mentioned in 
connection with Eqs. (4.6)-(4.8) may be expected to 
have an effect on the energy dependence and the 
angular distribution. Unless it is shown that these 
effects are negligible there is an additional reason for 
considering agreement with experiment as insufficient 
evidence for the criticism20 of standard formulas. The 
employment of the s function through the nuclear 
interior defeats from the outset the possibility of dis
cussing the nuclear interior with generality and realism 
since in the interior there are strong interactions 
between nucleons leading to admixtures of other con
figurations. It is also not known that wave absorption 
caused by competition with other reactions has a 
negligible effect on the angular distribution at 12.3-
MeV bombarding energy. Such an effect does not 
appear unreasonable if virtual Coulomb excitation 
should enhance the transfer of larger groups of particles. 
Even the endothermic reactions N14(N14,Bn)F17 and 
N14(N14,Cu)017 are energetically possible with 6.15 MeV 
available in the center-of-mass system, the first reaction 
being endothermic by 4.9 and the second by 4.1 MeV. 
The separation energies of He3 in N14 and F17 are 27.7 

22 G. Breit, K. W. Chun, and H. G, Wahsweiler, Phys. Rev. 
133, B403 (1964). 

and 22.8 MeV, and are large enough to inhibit ordinary 
tunneling very strongly, but it is not clear that a transfer 
of He3 would take place with a probability insufficient 
to cause appreciable wave absorption. The transfer of 
H3 corresponds to separation energies of 22.7 and 18.6 
MeV initially and finally, and is also somewhat im
probable. The exothermic deuteron transfer N14(N14, 
C12)016 may be expected, however, to be more probable. 
The separation energies of the deuteron in the initial 
and final states are 10.3 and 20.7 MeV, respectively, 
the Q value is 10.4 MeV. This, and perhaps other 
exothermic reactions, may perhaps introduce appre
ciable wave absorption with the participation of VCE. 
In this process, it will be remembered, the largeness of 
the separation energy does not count as heavily as for 
ordinary tunneling. These effects have not been defi
nitely excluded as having negligible effects on the 
angular distribution of N14(N14,N13)N15 and similarly 
resonance force effects caused by the identity of the 
two colliding nuclei have not been shown to produce 
an influence on the relative motion of N14 with respect 
to N14 that is insufficient to affect the fits to the 
Ei= 12.3-MeV data in Ref. 22 and in Ref. 20. 

The possibility that at energies below the Coulomb-
barrier, virtual Coulomb excitation may result in an 
enhancement of nuclear reactions, not necessarily of 
the single-nucleon transfer type, may be of interest in 
astrophysics. It is customary in considering nuclear 
reaction yields in this subject to make use of estimates 
of barrier penetrabilities in combination with the 
assumption that it is necessary for the colliding nuclei 
to come together within the range of nuclear forces in 
order that a reaction take place. The VCE processes 
should, on the other hand, be the dominant ones in 
low-energy collisions. Speaking qualitatively, the 
nuclear radii to be used neglecting VCE should become 
increasingly greater as the kinetic energy of colliding 
particles is decreased. 

VII. THE NUCLEON HALO REGION 

The treatments in BE-I and the succeeding ones 
consider only one plausible coupling scheme and one 
configuration of nucleons. This was done for simplicity 
in the desire to obtain a quantitative comparison with 
experiment without too many complications. The 
underlying picture is appreciably more general and it 
appears appropriate to give a brief account of it. In the 
spirit of the black-box point of view employed in 
Wigner's (R-matrix theory of nuclear reactions a surface 
separating the configuration space into an interior and 
an exterior region will be used. For one nucleus the 
interior region will be defined as corresponding to 
positions of nucleons inside a three-dimensional sphere 
of radius b having the center of mass of the nucleus for 
its center. In the case of deformed nuclei, it|would of 
course be more rational for some purposes to use an 
ellipsoid rather than a sphere but, for simplicity, only a 
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spherical separation surface will be discussed. Whenever 
all nucleons are inside the "sphere," the collection of 
nucleons will be said to be in the interior region. Other
wise, it will be said to be in the exterior region. The 
criterion for the radius of the sphere will be the possi
bility of neglecting the interactions between nucleons 
whenever they are outside the three-dimensional sphere. 
Approximately this is a density criterion. It cannot be 
formulated with complete exactness, but estimates indi
cate that it has an approximate meaning for the 
supposed short range of nucleon-nucleon forces. The 
chance of a collision in the exterior region decreases 
rapidly with b to such an extent that it becomes 
reasonable to neglect it for sufficiently large b. 

There are situations for which this is not the case. 
Thus, part of the exterior region is occupied by virtual 
deuterons, tritons, alpha particles, etc., forming ten
tacles in the many-dimensional configuration space23 

which are approximated by the clusters of Wilkinson.24 

However, a virtual alpha particle in a tentacle need not 
bear a strong resemblance to an ordinary alpha particle 
except at the end of the tentacle. At very low bom
barding energies, the tentacles usually do not tunnel 
through the gap between two nuclei as well as a single 
nucleon. On the other hand, according to Ref. 23, some 
short-range tunneling effects are expected to be ap
preciable and in the quantitative analysis of nucleon 
transfer data single-nucleon tunneling via tentacles of 
larger mass may have to be considered. If the formu
lation of tentacles and their penetration through the 
gap is enhanced by VCE, a possibility which was left 
out of consideration in Ref. 23, their importance may 
become greater especially because the separation energy 
does not matter as critically at larger distances. 

Returning to the simpler one-nucleon tunneling 
transfer without VCE and leaving the tentacles out of 
consideration, the wave function of a nucleus in the 
interior of the sphere S may be expanded in terms of 
antisymmetrized products of central field single-nucleon 
functions. The goodness of the shell model is immaterial 
for the possibility of doing so, the only relevant con
sideration being the completeness of the set of ex
pansion functions. The most important situation for 
the transfer is obtained if just one of the nucleons is 
outside S. In Wigner's terminology it is then in a closed 
channel and its "partner" is the residual nucleus. The 
convenient expansion for this part of the configuration 
space is in terms of products of wave functions of the 
residual nucleus and of the nucleon outside S. The 

23 G. Breit, Phys. Rev. 102, 549 (1956). 
24 D. H. Wilkinson, in Proceedings of the Rutherford Jubilee 

International Conference, Manchester, 1961 (Heywood and Com
pany, Ltd., London, 1961), p. 339. 

boundary condition for the single-nucleon wave func
tion is that of vanishing at oo. Since the energy of the 
nucleon is determined by the separation energy, the set 
of channel functions is completely defined. The energy 
of the single-nucleon wave function, i.e., the energy of 
relative motion of the nucleon and the residual nucleus 
will not match in general the single-nucleon energies 
used in the Slater determinants of the interior region. 
The connection of the actual wave function in the 
exterior region with the shell-model function is thus not 
direct. If the nucleus is well described by a shell-model 
configuration, then one may expect the function in the 
exterior region to be approximately represented by 
products just described employing for the relative 
motion of nucleon and residual nucleus one of the shell 
theory functions and assigning the others to the residual 
nucleus. But the function for the external nucleon must 
then either be used with an energy different from the 
separation energy or else the shell of nucleons in the 
residual nucleus must be used with the separation 
energy of the transferred nucleon—an unrealistic and 
hardly warranted alternative—or else the nucleons in 
the shell become unequivalent. In the general case, it 
is thus necessary to join the functions in the exterior 
region to a function consisting of a sum of different 
shell-structure functions in the interior. There is no 
general reason, therefore, for the functions in the exterior 
region to contain only the I values of the nucleons in 
the last shell of the nucleus. In particular, the neutron 
transferred from N14 may be partly in a p and partly 
in / and h states for the same state of the residual 
nucleus N13 and a similar situation obtains for a nucleon 
captured by N14 to form a state of N15. The possibility 
considered in BE-I is thus only one of many although 
it appears that it is likely to be the more important one. 

The fractional parentage considerations of shell 
structure theory which are said by some to have a 
bearing on the transfer problem are not closely con
cerned with the part of the wave function which has 
an immediate bearing on the transfer process, viz., that 
consisting of the residual nucleus function in a specified 
state and the function of relative motion of the nucleon 
with its separation energy rather than the energy in an 
auxiliary central field used in introducing a set of func
tions in shell-model calculations. 

The antisymmetry of wave functions in protons and 
neutrons has been considered to some extent in BE-I 
in connection with the ^-shell wave functions. The 
resonance effects mentioned toward the end of Sec. VI 
of the present paper contribute in general Heitier-
London type forces to the interaction of nuclei a-\-c 
with b, and of a with b+c, which should be considered as 
part of the combined problem of nucleon transfer and 
of nucleus-nucleus scattering. 


